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Abstract. Extreme water levels driving flooding in estuarine and coastal environments are often compound events, generated

by many individual processes like waves, storm surge, streamflow, and tides. Despite this, extreme water levels are typically

modeled in isolated open coast or estuarine environments, potentially mischaracterizing the true risk to flooding facing coastal

communities. We explore the variability of extreme water levels near the tribal community of La Push, within the Quileute

Indian Reservation on the Washington state coast where a river signal is apparent in tide gauge measurements during high5

discharge events. To estimate the influence of multivariate forcing on high water levels, we first develop a methodology for

statistically simulating discharge and river-influenced water levels in the tide gauge. Next, we merge probabilistic simulations

of joint still water level and discharge occurrences with a hydraulic model that simulates along-river water levels. This method-

ology produces water levels from thousands of combinations of events not necessarily captured in the observational record.

We show that the 100-yr ocean or 100-yr streamflow event does not always produce the 100-yr along-river water level. Along10

specific sections of river, both still water level and streamflow are necessary for producing the 100-yr water level. Understand-

ing the relative forcing of extreme water levels along an ocean-to-river gradient will better prepare communities within inlets

and estuaries for the compounding impacts of various environmental forcing, especially when a combination of extreme or

non-extreme forcing can result in an extreme event with significant impacts.

1 Introduction15

Storm events often generate concurrently large waves, heavy precipitation driving increased streamflow, and high storm surges,

making the relative contribution of the actual drivers of extreme water levels difficult to interpret from tide gauge observations

alone. Studies at the global (e.g., Ward et al. (2018)), national (e.g., Wahl et al. (2015); Svensson and Jones (2002); Zheng

et al. (2013)) and regional scale (e.g., Odigie and Warrick (2017); Moftakhari et al. (2017)) have evaluated the likelihood for

variables such as high river flow and precipitation to occur during high coastal water levels, demonstrating that relationships20

often exist between these individual processes. Understanding the nature of the dependency between bivariate or multivariate

processes is one of the first steps in piecing together the contributors to flooding events.
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Around river mouths, the elevation of the water level measured by tide gauges, or the still water level (SWL), varies depend-

ing on the mean sea level, tidal stage and the non-tidal residual contributors which may include the following forcings; storm

surge, seasonally-induced thermal expansion (Tsimplis and Woodworth, 1994), the geostrophic effects of currents (Chelton

and Enfield, 1986), wave setup (Sweet et al., 2015; Vetter et al., 2010), and river discharge. Most commonly, estimates of

non-tidal residuals are determined by subtracting predicted tides from the measured water levels. However, residuals com-5

puted in this way often contain artifacts of the subtraction process from phase shifts in the tidal signal and/or timing errors

(Horsburgh and Wilson, 2007). Another approach to describing the non-tidal residual is the skew surge, which is the absolute

difference between the maximum observed water level and the predicted tidal high water (de Vries et al., 1995; Williams et al.,

2016; Mawdsley and Haigh, 2016). While this methodology removes the influence of tide-surge interaction from the non-tidal

residual magnitude, it does not differentiate between the many factors contributing to the water level, an important step for10

distinguishing when and why high water (and thus flooding) is likely to occur.

Hydrodynamic models have recently been used in attempts to quantify the relative importance of river and ocean-forced

water levels to flooding. The nonlinear coupling of wind and pressure driven storm surge, tides, wave-driven setup, and riverine

flows has been found to be a vital contributor to overall water level elevation (Bunya et al., 2010). Furthermore, river discharge

is often found to interact nonlinearly with storm surge (Bilskie and Hagen, 2018), exacerbating the impacts of coastal flooding15

(Olbert et al., 2017), which suggests that the extent or magnitude of flooding is often underpredicted when both river and

oceanic processes are not modeled (Bilskie and Hagen, 2018; Kumbier et al., 2018; Chen and Liu, 2014). The computational

demand of two and three-dimensional hydrodynamic models, however, typically precludes a large amount of events to be

examined. Therefore, while accurately modeling the physics of the combined forcings, researchers taking this approach are

often limited to modeling only a few select cases.20

This study explores the influence of oceanographic and fluvial processes driving extreme water levels along a coastal river

where there is a substantial fluvial signal recorded in the tide gauge. Our study site, the Quillayute River, terminates in the

Pacific Ocean at La Push, Washington, an incorporated tribal community within the Quileute Indian Reservation. In order

to better understand the river- and ocean-forced water levels at this location, a methodology is developed for defining and

removing river-influenced water levels from SWLs measured at tide gauges. Both river discharge and river-influenced water25

levels are then incorporated into a non-stationary, probabilistic total water level model. This allows for multiple synthetic

representations of joint ocean and fluvial processes that may not have occurred in the relatively short observational records.

Next, a 1-dimensional hydraulic model is used to simulate water surface elevations along a 10 km stretch of river. Surrogate

models are generated from the hydraulic model simulations and used to extract along-river water levels for each probabilistic

joint-occurrence of SWL and river discharge. Finally, spatially-varying extreme event return levels are derived and discussed.30

The following sections describe the study area, present the modeling framework linking oceanographic and fluvial systems,

and evaluate the compounding drivers of extreme water levels along this river system.
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2 Study Area

The Quillayute River is located in Washington state along the US West coast and drains approximately 1630 km2 of the north-

western Olympic Peninsula into the Pacific Ocean (Czuba et al., 2010). The Quillayute River is approximately 10 km long,

is formed by the confluence of the Bogachiel and Sol Duc Rivers (Figure 1), and enters the Pacific Ocean at La Push, Wash-

ington, home to the Quileute Tribe. The Quileute Indian Reservation is approximately 4 km2 and the majority of community5

infrastructure sits at the river mouth, bordering the river and open coast. The Quileute Harbor Marina is also situated just inside

the river mouth, and is the only port between Neah Bay and Westport, Washington. Rialto spit, which connects Rialto Beach

to Little James Island, contains a rocky revetment which protects the marina and the community from ocean and storm wave

impact.

The Quillayute River is a natural, unstablized river that is relatively straight at the confluence of the Bogachiel and Sol Duc10

rivers and increases in sinuosity moving towards the river mouth. Channel-bed materials are coarse (gravel and cobble) in

the free-flowing channels and dominated by sand in the small estuary (Czuba et al., 2010). Upstream of river km 3 there are

numerous point bars and bends in the river. Between river km 1.5 and 3, the Quillayute is braided with several side channels,

usually containing woody debris (Czuba et al., 2010). The channel is straight near the river mouth and is confined by the Rialto

spit revetment before draining into the Pacific Ocean.15

The oceanic climate of the coastal Pacific Northwest (PNW) is cool and wet with a small range in temperature variation and

the majority of rainfall between October and May. Four river basins, the Sol Duc, Bogachiel, Calawah, and Dickey rivers, feed

into the Quillayute River and comprise the majority of the watershed. Streamflow in the region is primarily from storm-derived

rainfall in the winter and snowmelt during the spring and summer (WRCC, 2017).

Oceanographically-driven SWLs are generally comprised of non-tidal residuals, astronomical tides, and mean sea level.20

Regional variations in shelf bathymetry, shoreline orientation, storm tracks (Graham and Diaz, 2001), seasonality (Komar

et al., 2011), and winds drive differences in storm surge along the US West coast. However, the narrow continental shelf, in

relation to broad-shelved systems, controls the magnitude of storm surge, and it is rarely larger than 1 m (Bromirski et al.,

2017; Allan et al., 2011). The PNW is also influenced by a unique interannual climate variability due to the El Niño Southern

Oscillation. During El Niño years, the PNW experiences increased water levels for months at a time, along with changes in25

the frequency and intensity of storm systems (Komar et al., 2011; Allan and Komar, 2002). In the PNW, tides are micro- and

mesotidal, and at La Push the tidal range is mixed, predominantly semidiurnal, with a mean range of 1.95 m and a great diurnal

range of 2.58 m (https://tidesandcurrents.noaa.gov/datums.html?id=9442396).

Global rise in sea level and local changes in vertical land motions result in significant longshore variations of relative sea

level along the Washington coastline. The northern Washington coast is experiencing relative sea level rates of -1.85 ± 0.4230

mm/yr due to a rising coastline, while relative sea level in Willapa Bay in southern Washington is 0.94 ± 2.14 mm/yr (Komar

et al., 2011). Tide gauge records at La Push are too short to calculate robust trends in sea level, however, sea level is likely

rising in this location, rather than falling, partly due to local land subsidence (Miller et al., 2018).

3

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-347
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 9 January 2019
c© Author(s) 2019. CC BY 4.0 License.



Fi
gu

re
1.

M
ap

of
st

ud
y

ar
ea

(l
ef

t)
,w

hi
ch

is
de

no
te

d
on

th
e

re
gi

on
al

m
ap

(r
ig

ht
)i

n
th

e
bl

ac
k

bo
x.

T
he

L
a

Pu
sh

tid
e

ga
ug

e
is

re
pr

es
en

te
d

as
a

re
d

sq
ua

re
w

hi
le

ot
he

r

re
gi

on
al

tid
e

ga
ug

es
ar

e
re

pr
es

en
te

d
as

bl
ue

sq
ua

re
s.

T
he

C
al

aw
ah

an
d

So
lD

uc
riv

er
ga

ug
es

ar
e

re
pr

es
en

te
d

as
bl

ac
k

tr
ia

ng
le

s
an

d
U

SG
S

m
ea

su
re

m
en

ts
ite

s
fr

om

th
e

M
ay

20
10

su
rv

ey
ar

e
de

pc
ite

d
as

ye
llo

w
ci

rc
le

s.
A

pp
ro

xi
m

at
e

riv
er

ki
lo

m
et

er
s

ar
e

de
no

te
d

as
bl

ac
k

cr
os

se
s

on
th

e
st

ud
y

ar
ea

m
ap

.

4

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-347
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 9 January 2019
c© Author(s) 2019. CC BY 4.0 License.



Fi
gu

re
2.

D
ig

ita
lE

le
va

tio
n

M
od

el
(D

E
M

)u
se

d
fo

rt
he

H
E

C
-R

A
S

si
m

ul
at

io
ns

of
th

e
Q

ui
lla

yu
te

R
iv

er
.H

E
C

-R
A

S
cr

os
s

se
ct

io
ns

ar
e

de
pi

ct
ed

as
gr

ey
lin

es
.A

pp
ro

x-

im
at

e
riv

er
ki

lo
m

et
er

an
d

th
e

lo
ca

tio
n

of
th

e
tid

e
ga

ug
e

ar
e

de
pi

ct
ed

as
di

am
on

ds
an

d
a

sq
ua

re
,r

es
pe

ct
iv

el
y.

5

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-347
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 9 January 2019
c© Author(s) 2019. CC BY 4.0 License.



3 Data and methods

3.1 Modeling framework

Return level, or design, events are typically assessed via analyses of available observational datasets. However, observational

records rarely extend more than a few decades, suggesting that all combinations of jointly-occurring processes generating

extreme water levels may not have been physically realized. Therefore, in order to understand the oceanographic and fluvial5

drivers of extreme water levels along the Quillayute River from a full range of possible forcing conditions, we develop a

methodology to merge statistically simulated joint SWL and discharge records with a one-dimensional (1D) hydraulic river

flow model. This approach is designed to allow for an interpretation of extreme water levels as if different physically plausible

combinations of individual driving processes had been available to be sampled over the last thirty years.

First, a method is developed to define and model river-influence in the SWLs. Next, combinations of daily maximum SWL10

and river discharge are statistically simulated to create many random realizations of joint SWL-discharge forcing using the Ser-

afin and Ruggiero (2014) full simulation total water level model. Care is taken to appropriately model both the non-stationarity

of each signal, as well as the dependence between the signals. A range of SWL-discharge conditions are modeled using the US

Army Corps of Engineers’ (USACE) Hydrologic Engineering Center’s River Analysis System (HEC-RAS; Brunner (2016)) to

produce surrogate models for generating along-river water levels. The surrogate models are then used to produce water levels15

at a series of transects for each statistically simulated SWL-discharge event. The synthetic SWL-discharge simulations paired

with HEC-RAS water surface profiles allows for an analysis of the dominant drivers of extreme water levels along the river.

Descriptions of the hydrodynamic and statistical models, as well as the overall framework for modeling spatially-varying water

levels are described in the following sections.

3.2 Hydraulic model domain and setup20

HEC-RAS is a model that is used to estimate water surface elevations in rivers and streams in both steady and unsteady flow

and under subcritical, supercritical, and mixed flow regimes (Goodell, 2014). HEC-RAS has been previously used to model

water surfaces for a range of applications including, but not limited to, floodplain mapping (Yang et al., 2006), flood forecasting

(Saleh et al., 2017), dam breaching (Butt et al., 2013), and flood inundation (Horritt and Bates, 2002). HEC-RAS computes

water levels by solving the 1D energy equation with an iterative procedure, termed the step method, from one cross-section to25

the next (Brunner, 2016). For subcritical flows, the step procedure is carried out moving upstream; computations begin at the

downstream boundary of the river and the water surface elevation at an upstream cross-section is iteratively estimated until a

balanced water surface is obtained. Energy losses between cross-sections are comprised of a frictional loss via the Manning’s

Equation and a contraction/expansion loss via a coefficient multiplied by the change in velocity head (see Brunner (2016) for

more details).30

In this application, HEC-RAS is used to model 1D water levels under gradually varied, steady flow conditions at specified

transects along the Quillayute River. While a simplification of flood processes, this methodology is commonly used to create

flood hazard maps. HEC-RAS model runs require detailed terrain information for the river network, including bathymetry and
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topography for the floodplains of interest. Topography data is sourced from a 2014 U.S Army Corps of Engineers (USACE)

lidar survey (USACE, 2014). Bathymetry data is developed by blending two NOAA digital elevation models (DEM): National

Geophysical Data Center’s (NGDC) La Push, WA tsunami DEM (1/3 arc second; NGDC (2007)) and the coastal relief model

(3 arc seconds; NGDC (2003)). These datasets, however, do not accurately resolve the channel depths of the Quillayute River

inland of the coast, so a 2010 US Geological Survey (USGS)-conducted bathymetric survey of the river is also blended into5

the DEM (Czuba et al., 2010).

In 2010, depths of along-river cross sections and an 11 km long longitudinal profile from the Bogachiel River (Figure 1) to

the mouth of the Quillayute River were surveyed (Czuba et al., 2010). The survey of the longitudinal river profile also recorded

the elevation of the water surface. Ideally, the collected bathymetry dataset would be merged directly into the existing DEM.

The Quillayute River, however, is uncontrolled and meanders over time, producing a variation in the location of the main10

river channel between the DEM and the high-resolution USGS-collected bathymetric data. Therefore, the USGS bathymetric

profiles are adjusted to match the location of the DEM channel. While a product of multiple datasets and processing steps, the

final DEM provides bathymetric/topographic data with the most up-to-date channel depths for the Quillayute River (Figure 2).

A series of 58 transects are extracted from the DEM using HEC-GeoRas (Ackerman, 2009) and written into a geometric

data file for input into HEC-RAS (Figure 2). Each river transect extends across the floodplain to the 10 m contour, where15

applicable. Otherwise, each transect terminates at the highest point landward of the river. Because HEC-RAS computes energy

loss at each transect via a frictional loss based on the Manning’s equation, Manning’s coefficients, an empirically derived

coefficient representing resistance of flow through roughness and river sinuosity, are selected for the river channel and the

floodbanks. In-channel Manning’s coefficients are tuned to calibrate the model’s resulting water surface elevations with that

of the observed water surface data (see section 3.2.1). Manning’s coefficients for the rest of the computational domain (e.g.,20

anything overbank) are estimated using 2011 Land Cover data from the Western Washington Land Cover Change Analysis

project (NOAA, 2012) and visual inspection of aerial imagery. Model domain boundary conditions are chosen as the water

surface elevation at the tide gauge (m; downstream boundary) and river discharge from a combination of records representing

the Quillayute River watershed (m3s−1; upstream boundary).

3.2.1 HEC-RAS model validation25

Observational records in the region are generally sparse; one tide gauge exists in the marina near the river mouth and hourly

discharge measurements are only located on two of the four rivers which feed into the Quillayute watershed (Figure 1). The

closest gauge is located 7 miles upriver from the Quillayute River on the Sol Duc River (WA Dept of Ecology 12A070) and

measures approximately 9 years (2005-2014) of hourly discharge and stage observations. The second gauge is located on the

Calawah River (USGS 12043000), which flows into the Bogachiel River, and has hourly discharge and stage measurements30

from 1989 - 2016. While the Calawah River gauge is located approximately 15 miles upriver from the Quillayute River, the

steep catchment drives a short response time in rainfall and the record is highly correlated with the discharge measurements

from the Sol Duc River gauge.
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In order to determine the dominant inputs to Quillayute River discharge, combined estimates of the Sol Duc and Calawah

Rivers are compared to measurements taken on the Quillayute River in May 2010 (see Figure 1 for measurement location;

Czuba et al. (2010)). Combined discharge estimates from the Sol Duc and Calawah rivers underpredict streamflow in the

Quillayute River by approximately 33%. An area scaling watershed analysis (Gianfagna et al., 2015) is undertaken to rectify

the discharge by the amount of ungauged watershed. The watershed delineation shows that the Bogachiel, Calawah, Sol Duc,5

and Dickey rivers account for 24%, 22%, 37%, and 17% of the total Quillayute River watershed area. Noting the similar

watershed characteristics and proportional area, the contribution of the Bogachiel River is estimated by scaling the Calawah

River discharge measurements by a factor of 2.09. Combined discharge estimates from the Sol Duc River and Bogachiel River,

computed using the above scaling factor, are also compared to the Quillayute discharge measurements taken during the 2010

survey. Using this methodology, the discharge estimates of the Quillayute River fall within the uncertainty of the discrete USGS10

measurements (Table 1).

The longitudinal measured water surface profile allows for the verification and calibration of HEC-RAS modeled water

surface elevations on the day of the survey (Figure 3). HEC-RAS is run using discharge of the watershed-scaled Bogachiel

River as the upstream boundary condition during the hour of the field survey and this discharge is combined with a lateral

inflow from the Sol Duc River around river km 8.5. Manning’s coefficients along the Quillayute are calibrated to best represent15

the water surface elevation on the day of the survey. The final calibrated HEC-RAS model produces a water surface elevation

with an average bias less than 1% (less than 1 cm) and an average standard deviation of approximately 5% (7.5 cm). The

maximum difference between the two water surfaces is approximately 14 cm (20%). The percent difference between the depth

of the observed and modeled water surface is almost always less than 10% (Figure 3). Final Manning’s coefficients range from

to 0.005 to 0.1, and are on average 0.025.20

3.3 Total water level simulation model

Hourly measured SWLs and predicted tide measurements at the La Push tide gauge (NOAA station 9442396) relative to

Mean Lower Low Water (MLLW) are downloaded, transformed into NAVD88 to match the DEM, and decomposed into mean

sea level (ηMSL), tide (ηA), and non-tidal residual (ηNTR). The ηNTR is further decomposed into monthly mean sea level

anomalies (ηMMSLA), seasonality (ηSE), and storm surge (ηSS), using methods described in Serafin et al. (2017). A 6th25

geophysical signal recorded by the tide gauge, the river-influenced water level (ηRi), is also evaluated and removed from the

ηSS signal (see section 4.2 for description and methods).

The continuous La Push tide gauge record begins in 2004, recording 12 years of water levels. This record, however, does

not capture the extreme water levels occurring during the 1982/83 and 1997/98 El Niños. Therefore, water levels from the La

Push tide gauge are merged with water levels from the Toke Point tide gauge (beginning in 1980, NOAA station 9440910) to30

create a combined water level record representing a larger range of extreme conditions. ηA and ηSE , water level components

deterministic to the La Push tide gauge, are extended to 1980. Water level components influenced by regional or local forcings

like ηMMSLA and ηSS , are compared before combining. ηMMSLA between the Toke Point and La Push tide gauges are

similar, so Toke Point ηMMSLA are appended to the beginning of the La Push ηMMSLA. Toke Point, however, has slightly

8
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Figure 3. a) Bathymetry and longitudinal profile from the Bogachiel River to the mouth of the Quillayute River surveyed by the USGS in

May of 2010 (black). The longitudinal water level for the calibrated HEC-RAS model is depicted in blue. b) Percent difference between the

measured (black) and HEC-RAS modeled (blue) water level. c) Actual difference between the measured (black) and HEC-RAS modeled

(blue) water level.

higher magnitude ηSS than La Push and there is a noticeable offset in the highest ηSS peaks. A correction is thus applied to

the Toke Point ηSS before appending it to the beginning of the La Push ηSS . ηMSL is extended back to 1980 using relative

sea level rise trends for the region. Once the two tide gauges are merged, the combined hourly tide gauge record extends from

1980 - 2016 and is 97% complete. Discharge measurements sampled at 15 minute intervals for the Calawah and Sol Duc rivers

are interpolated to hourly increments to match the timing of the SWL measurements. At the hourly scale, the Calawah River5

record is 99% complete, while the Sol Duc River record is 100% complete.

The non-stationary, probabilistic full simulation model of Serafin and Ruggiero (2014) (hereinafter, SR14) was developed

to produce synthetic time series of total water levels (TWLs), the combination of waves, tides, and non-tidal residuals, on

open-coast sandy beaches. SR14 simulates the individual components of the TWL in a Monte Carlo sense, while appropriately

accounting for any dependencies existing between the variables. This modeling technique is able to include non-stationary10
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processes influencing extreme and non-extreme events, such as seasonality, climate variability, and trends in wave heights and

water levels. SR14 outputs a number of synthetic records of all variables driving TWLs that produce alternate, but physically

plausible, combinations of waves and water levels along an identified stretch of coastline (see SR14 and Serafin et al. (2017)

for more information). This technique is flexible to allow for both the simulation of the present-day climate for computing

robust statistics on extreme TWL events, as well as the simulation of future climates and their impact on extreme TWLs.5

Because SR14 was developed for use in open-coast environments, it does not include a procedure for simulating estimates

of river discharge, important to high water levels in estuarine environments, as well as present in the local tide gauge at the La

Push study site. SR14 is therefore modified to produce synthetic time series of discharge as well as a river-induced water level.

Specifics of these modifications are presented in section 4.3.

3.4 Hybrid modeling of along-river water levels10

The modified simulation technique of SR14 is used to produce 70 500 year long synthetic records representing present-day

climate for the time periosd of 1980-2016 of daily maximum SWL and discharge for both the Sol Duc and Bogachiel rivers.

Modeling all of the simulated conditions in HEC-RAS in order to output along-river water levels would be prohibitively ex-

pensive. As an alternative to time consuming simulations, surrogate models (Razavi et al., 2012) are developed to approximate

the response of a HEC-RAS simulation. A large number of combinations of SWL and river discharge at the Bogachiel and Sol15

Duc rivers are run in HEC-RAS, outputting along-river water level at each HEC-RAS transect. The number of combinations

of SWL and river discharge used in the surrogate models are chosen to minimize interpolation errors during validation runs.

A surrogate model representing along-river water level is created for each modeled SWL condition using a scattered linear

interpolation of the 3D surface of boundary conditions.

Along-river water levels are extracted from the surrogate model relating to each synthetic combination of SWL and river20

discharge, providing a longitudinal water surface profile for each day of the 500 year long record in an efficient manner. The

large sample size of joint SWL-discharge events ensures a robust, probabilistic estimate of low probability water levels along

the Quillayute River. This allows for an exploration of the drivers of along-river water levels over the past 35 years.

3.5 Extracting spatially variable return level events

The new methodology described in this paper allows for a statistically robust estimate of low probability, along-river water25

levels not observed in the historical record. Typically, return levels are estimated by modeling the estimated 100-yr hydrologic

or meteorologic event, and the resulting water level is assumed to be statistically representative of this condition. However,

processes driven by multiple variables means that different "sizes" of hydrologic conditions could potentially drive low proba-

bility water levels. The 500 year long synthetic records simulated using the modified SR14 allows for the empirical extraction

of return level events rather than an estimation from historic records. Using the count-back method, SWL, river discharge, and30

water level return level events are selected from each record, where the largest, 5th largest, and 10th largest events in each

record correspond to the 500-yr, 100-yr, and 50-yr return levels, respectively, at each transect. This allows for an analysis of

spatially-variable, along-river extreme water levels, as well as the ability to map to the jointly-occurring forcings driving the

11

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-347
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 9 January 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 4. a) The joint relationship between storm surge and wave height for La Push, Washington (black) and Westport, Washington (pink).

Example storm surge and discharge relationship at b) La Push and c) Westport, Washington.

return level water surface. The large sample space of simulated variables permits a comparison of event-based return levels,

where the 100-yr water level is determined by the 100-yr forcing, to response-based return levels, where the 100-yr water level

is derived.

4 River-influence in the tide gauge

Once the observational SWL at the La Push tide gauge is decomposed, peak ηSS events are found to be the highest on record5

compared to all US West coast tide gauge stations (Serafin et al., 2017). ηSS is often found to be jointly related to significant

wave height (Hs), where the most extreme ηSS occur during storms with associated low pressures, high winds, and high waves.

When compared to the relationship of Hs and ηSS towards the south in Westport, Washington, many large ηSS at La Push occur

during small waves, outside of the joint Hs-ηSS relationship (Figure 4).

Upon further investigation of the La Push ηSS record, almost all instances of extreme ηSS events irregular to the joint Hs-10

ηSS relationship are positively correlated with high discharge events. This is inconsistent with ηSS in Westport, Washington

(Figure 4) and with other tide gauges along the US West coast (not shown). Most tide gauges in Washington and Oregon are

situated in bays and estuaries where the estuary volume is much larger than the river input volume. On the other hand, the La

12
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Figure 5. Resulting storm surge at the La Push tide gauge modeled using ADCIRC for a simulation including full forcing (red) and a

simulation including only discharge and tides (blue) compared to the observed storm surge (black). The ADCIRC simulation was run for the

maximum discharge event on record occurring on January 8, 2009.

Push tide gauge is located on a river discharging directly into the ocean. It is therefore hypothesized that the anomalously large

signal in the ηSS is indeed river-induced.

4.1 Physics-based evidence of river-induced signal

To further investigate the anomalously large ηSS at the La Push tide gauge, the hydrodynamic model ADvanced CIRCculation

(ADCIRC, Luettich Jr et al. (1992)) and Simulating Waves nearshore (SWAN, Zijlema (2010) model (ADCSWAN; Dietrich5

et al. (2011)) is used to simulate an example storm event. ADCSWAN has been extensively validated worldwide and has

recently found to be skillful for modeling ηSS in the PNW (Cheng et al., 2014). ADCIRC is run in 2D depth-integrated

barotropic mode which performs well for calculating water surface elevations during storm events (Weaver and Luettich,

2010). SWAN is run in non-stationary mode on an unstructured grid, allowing for tight coupling to ADCIRC.

To test the influence of streamflow on water levels at the tide gauge, the peak streamflow event on record, occurring on10

January 8, 2009, is simulated. The model is run with two forcing implementations: one including full forcing (e.g., waves,

wind, pressure, streamflow, sea level anomalies, seasonality, and tides) and one including only streamflow and tides. Model

results show that the simulation including only streamflow and tides is nearly able to recreate the measured ηSS signal at the

tide gauge (Figure 5). The addition of wind, pressure, waves, sea level anomalies, and seasonality is found to have minimal

impact on the peak observed ηSS . Furthermore, maximum peak ηSS is found to occur during low tide, indicating a relationship15
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between tide and discharge. While this simulation only explores one instance of this phenomenon, it provides physics-based

evidence that anomalously high ηSS at this tide gauge is likely being driven by large discharge events.

4.2 Removal of river-influence from the oceanographic signal

Storms tend to influence large stretches of coastline at once, and while site-specific variations in the coastline or distance

from storm can drive local variations in the amplitude of ηSS , the overall ηSS signal is fairly coherent across regional tide5

gauges across the PNW. The river-influenced water levels are therefore isolated and removed from the La Push ηSS record by

developing a relationship between the La Push ηSS and a regionally-averaged ηSS .

ηSS decomposed from the Neah Bay, Westport, Astoria, South Beach, and Garibaldi tide gauges are averaged each hour to

create a regional ηSS record (black line; Figure 6; tide gauge locations in Figure 1). The standard deviation (σ) of the available

ηSS records at each hour is used to represent the variability of ηSS due to local effects at each station. ηSS at La Push that are10

larger than the regional average + 2.5σ are considered anomalous to the region, and defined as river-influenced water levels

(ηRi). Observations flagged as larger than the regional average + 2.5σ (dashed line; Figure 6) were replaced with the regional

average + σ. A value of + σ was chosen to minimize jumps in time series when subsituting in a smoother dataset. While this

methodology does not remove all the effects of ηRi in the ηSS signal, it captures the majority of anomalous water levels driven

by high discharge events.15

ηRi is produced from the difference between the original La Push ηSS and the ηSS modified described above which removes

ηSS anomalous events. ηRi occurring during low discharge events (here low is defined as less than 10 m3s−1, the approximate

summer average discharge) is added back into the La Push ηSS , as it is likely not driven by river forcing. After ηRi was removed

from the ηSS signal, it is saved as a time series of river-forced water level events.

4.3 SR14 modifications for estuarine environments20

SR14 was originally developed to simulate TWLs in a Monte Carlo sense in open-coast environments and does not have a

mechanism in place for simulating the new variables of interest, river discharge (Q) and ηRi. SR14 was therefore modified to

include simulations of ηRi and Q at both the Calawah and Sol Duc rivers. To do this, relationships were formed with variables

already simulated within the SR14 model.

High discharge events in the Sol Duc and Calawah (and therefore Bogachiel) rivers tend to occur within hours of peak wave25

and water level events. Due to the interrelated nature of these forcings, daily maximum estimates of Q at the Calawah River

are compared to all variables simulated in the SR14 model (e.g., Hs, ηSS , ηNTR, ηMMSLA, etc.) to capture any dependency

inherent in these processes. The most correlated variable to Q is Hs.

Similar to methods in SR14, extreme Hs and Q events at the Calawah River are determined using the Peak Over Threshold

approach, where all independent daily maximum events over a defined threshold are selected. Threshold excesses are fit to30

non-stationary Generalized Pareto distributions, which include seasonality as a covariate. Both variables are transformed to

approximately Fréchet margins. A bivariate logistics model is then used to model the dependency between the variables.

To simulate, random numbers are sampled from a uniform distribution and mapped to each variable’s prescribed Fréchet

14
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Figure 7. a) Joint relationship between wave height (Hs) and storm surge and discharge (Q) for the observational record (black) and one

example 500 year simulation (red). b) Seasonal model fit for the probabilistic simulation of the Sol Duc River Q in relation to the Bogachiel

River Q. The inset displays the model fits for discharge less than 30 m3s−1.

cumulative probability distribution function. Based on the probability of occurrence of the transformed value, the estimate

is transformed back to the physical scale using the Generalized Pareto distribution if extreme, dependent on the variable’s

threshold. If not extreme, the estimate is transformed back to the physical scale using monthly-varying Gaussian copulas.

This technique generates a synthetic record of Q at the Calawah River gauge that is seasonally varying, related to larger-scale

climate variability through wave height (essentially as a proxy for storms), and carries the same dependency between variables5

as the observational record (Figure 7). Q is then multiplied by 2.09 to represent inflow from both the Bogachiel and Calawah

rivers. The bivariate logistic model preserves the dependency and frequency of occurrence of joint Hs-Q events in extreme and

non-extreme space. This modeling technique is also used to simulate ηSS in SR14.

Because discharge measurements at the Sol Duc River are highly correlated with the Calawah River (ρ = 0.9, τ = 0.83), the

Sol Duc River is modeled based on a relationship with the Calawah River. Once the Calawah River is scaled to represent the10

Bogachiel River, estimates of Q at the Sol Duc River are related to the Bogachiel River during the summer and winter seasons.

First, daily maximum Q is split into summer (May, June, July, August, September, and October) and winter (January, February,

March, April, November, December) seasons. Next, two models are fit to the joint relationship between the Sol Duc River Q
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(hereinafter QSD) and the Bogachiel River Q (hereinafter QB) each season, such that for the summer season, a best-fit linear

model represents QSD when QB falls between 0-10 m3s−1, and a best-fit quadratic represents QSD when QB falls between 10

- 700 m3s−1 (Figure 7). For the winter model, a linear model is fit to QSD when QB fell between 0-30 m3s−1, and a quadratic

when QB falls between 30 - 2300 m3s−1 (Figure 7). Equally spaced bins are determined and residuals of QSD from the model

fits are generated. Normal distributions are fit to the QSD residuals in each bin, except for low bins (less than 30 m3s−1) where5

residuals are fit to exponential distributions. QSD is then directly related to simulated estimates of QB ; QSD is first determined

by fitting the prescribed model to each estimate of QB , and then a random sample is taken from the residuals per that bin and

added to the model. This technique captures the joint-peaks of the river systems visible in the observed dataset, while allowing

for variability in the simulated estimates.

The largest ηRi usually occur coincident with low tide. This is likely due to the competing ocean and river processes during10

high Q events. During high tide, riverine floodwaters are blocked from outletting to the ocean and back up in the river. As the

water recedes during low tide, the river is no longer suppressed and exits through the inlet (Kumbier et al., 2018; Chen and Liu,

2014). The drainage of the river into the ocean generates high water levels at the mouth, elevating the SWL during low tide,

driving a peak in the ηNTR. ADCIRC simulations confirm this phenomenon, as the river discharge peak is modeled exactly at

low tide (Figure 5). We are, however, most interested in the maximum daily SWL that drives flooding, which generally occurs15

during, or close to, the daily high tide. Modeling large peaks in ηRi that occur during low tide would therefore erroneously

increase simulated estimates of the SWL occurring during high tide. Thus, instances of ηRi occurring approximately during

high tide are retained and all other ηRi peaks are discarded. The resulting 155 peaks in ηRi are correlated with QB (Figure 8).

In order to statistically simulate ηRi, two linear regression models are fit to QB and ηRi, where QB is the independent

variable. Two models rather than one are chosen because the elevation of ηRi increases and becomes more varied as QB20

increases. The first linear model is fit to QB below 190 m3s−1, and the second is fit to QB above 190 m3s−1. Next, coarse

bins ranging from 100 to 400 m3s−1 are created and the σ of ηRi values within each bin is saved. For bins that contained less

than 10 observations, observations from the previous bins were included until there were more than 10 observations per bin

for σ calculations. Finally, a 2-point running average was used to smooth the σ from each bin to ensure continuous transitions

and avoid the edge-effects from binning a sparse dataset. After QB were simulated using SR14, the developed modification25

simulates ηRi for every day in time by selecting the synthetic daily estimate of QB and randomly sampling from a normal

distribution for each QB bin, where the distribution parameters are modeled as µ = the regression model and σ = the standard

deviation from each bin (Figure 8).

There are times of high QB without a distinguishable ηRi in the tide gauge record, thus a model is also developed to simulate

the frequency of occurrence of ηRi as not to artificially elevate SWLs. The frequency of occurrence of ηRi is therefore defined30

as the percentage of time ηRi occurs in the observational record. In the observational record, ηRi occurs less than 10% of the

time when QB is less than 210 m3/s, and 15 - 25% of the time when Q is between 840 and 2090 m3s−1 (Figure 8). For Q

greater than 2090 m3s−1, ηRi occurs during daily maximum water levels approximately 50% of the time. Estimates of the

percentage of time ηRi occurs are modeled by a best-fit cubic function to the percentage of time the values have occurred in

the record. Because there is no record of events greater than 2500 m3s−1, we represent the percentage of occurrence as 100%,35
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Figure 8. a) The relationship between the river-influenced water level (ηRi) and river discharge (Q). The solid black line represents the linear

fit to the observational records (black dots). b) The percentage of time ηRi occurs in the record during a specific Q. In both panels, black

represents the observational record and red represents one example 500 year simulation.

because at some point, large Q events would drive ηRi to occur 100% of the time (Figure 8). The example simulation shows

SR14 captures both the spread of ηRi related to Q events as well as the percentage of time of occurrence (Figure 8).

5 Results

The following section first provides a validation of the surrogate models by comparing along-river water levels from a specific

set of conditions directly modeled in HEC-RAS to along-river water levels interpolated from the surrogate models for the5

same set of conditions. Next, the spatial and temporal variability of the magnitude of along-river water levels and their driving

conditions are examined. Finally, low probability water levels, like the 100-yr event, are extracted and their dominant drivers

are evaluated and compared to the low probability water level from the 100-yr discharge or 100-yr SWL event at each transect.

5.1 Surrogate models

Approximately 3,000 Q-SWL validation scenarios are directly modeled through HEC-RAS to determine if the number of10

conditions used for surrogate model generation represent a large enough sample space of forcing conditions for correctly
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Figure 9. a) Modeled HEC-RAS Q boundary conditions used to generate the surrogate models (red-dotted lines) compared to the simulated

conditions used for surrogate model validation (green dots). The black dots represent the observational daily max conditions, while the

colored circles represent the worst-performing of the validation tests. The red and blue colored circles represent the scenarios where the

interpolated water surface had a bias of over 10 cm lower than the model. b) Example along-river water level for the worst performing

condition in the validation tests.
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Figure 10. a) Average root mean square error (RMSE) and b) bias for all validation scenarios (e.g., 197 Q and 15 SWL) across four SWL

scenarios. The worst-performing model (pictured in the previous figure) is discharge scenario 153.

interpolating along-river water levels. The validation scenarios are chosen to cross through both HEC-RAS modeled and

unmodeled conditions (Figure 9). Across all validation scenarios, the average root mean square error (RMSE) between the

directly-modeled and surrogate model-generated water level is 1 cm. Only about 1.5% of the validation scenarios have a bias

greater than 10 cm, and the largest RMSE at any transect is 20 cm across all water level scenarios (Figure 10). The worst

represented scenarios occur during high Bogachiel River Q events paired with low Sol Duc River Q and low SWL events.5

However, even during these cases, the differences between the surrogate model-interpolated and directly modeled water levels

are small (Figure 9). The main research interest here is extreme water levels, and the conditions driving low probability return

level events rarely fell around the scenarios with the highest bias.

5.2 Temporal variability in along-river water levels

Similar to the driving boundary conditions of SWL and Q, seasonal variability exists in the elevation of along-river water10

levels. The highest elevation water level occurs during the winter (here defined as December, January, and February), while
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Figure 12. Left) Observational (black) and simulated (red) monthly median still water level (SWL), non-tidal residual (ηNTR), and discharge

(Q). Right) Observational (black) and simulated (red) monthly 98th percentile of the SWL, Q, and ηNTR. Red shading indicates the bounds

value from each simulation.

the lowest elevation water level occurs during the spring (March, April, May) ( Figure 11). The spring profile is on average

(maximum difference) 50 cm (84 cm) lower than the winter profile, 33 cm (63 cm) lower than the fall (September, October,

and November) profile, and 3 cm (12 cm) lower than the summer (June, July, and August) profile (Figure 11). The difference

between seasonal profiles is nonlinear upstream, and certain sections of the river have larger changes in elevation between

months (Figure 11). However, this variation becomes relatively linear downstream of river km 3.5

The seasonal variability of the along-river water level is driven by the seasonality of the forcings, which are well represented

in the simulations compared to the observations (Figure 12). The median Q of the Quillayute (combined Sol Duc and Bogachiel

Q) is approximately 200 m3s−1 higher in winter months than summer months (Figure 11). This cyclical variability is also

depicted in the monthly median SWL and ηNTR. Winter ηNTR is approximately 40 cm higher than summer ηNTR, which is

also reflected in the SWLs (a and b, Figure 12). The 98th percentile of Q, SWL, and ηNTR have a similar seasonal variability10

as median conditions (Figure 12).
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5.3 Probabilistic spatially-varying extreme water levels

Using the count-back method, water level return level events at each transect are extracted for all 70 500 year long simulations

representing present-day climate from 1980-2016. This methodology thus provides both an estimate of the average water level

return level as well as the uncertainty around that value. The magnitude of along-river water level return level events are

between 2 and 10 m, with peaks near 1, 3 and 9 km (Figure 13). While the peaks in water level return level events occur5

at similar locations, the difference between water level return level events spatially varies moving upriver. For example, at

river km 1, the difference between the average annual and 100-yr event is approximately 50 cm, whereas at river km 9.5, the

difference between the two events is 2 m (Figure 13).

The many realizations of joint SWL-Q allows for the investigation of the fluvial and oceanographic processes driving the

magnitude of water level return level events. Panels c and d in Figure 13 displays the average condition forcing the water level10

return level for the annual, 25, 100, and 500-yr event. Between river km 0 and 1.5, the average SWL driving the water level

return level event is constant and then gradually decreases over a 1 km zone by approximately 50 cm. On the other hand, the

average Q driving the water level return level event gradually increases by approximately 2000 m3s−1 over river km 0 - 3 and

then is fairly constant from river km 3 to 10 (Figure 13). Compared to the univariate return level forcings, we find that the

stretches of river that display constant SWL or Q forcing approximate the univariate return level event such that the 100-yr15

SWL does indeed cause the 100-yr water level in the lower river near the ocean outlet, while the 100-yr Q event drives the

100-yr water level along river km 3 - 10 (grey dashed lines, Figure 13). However, between river km 1.5 - 2.5 a flood transition

zone is present, where neither the SWL return level or the Q return level drives the water level return level. This is consistent

across all return level events, regardless of likelihood. This is further evidenced by investigating the SWL and Q conditions that

drive the annual and 100-yr event at specific along river transects (Figure 14). At the river mouth, the annual water level event20

occurs during Q ranging from 20 - 3200 m3s−1 and SWLs that vary by only 10 cm. Moving upstream to river km 2, which

lies in the flood transition zone, the annual event is driven by both high SWL occurring during low Q and low SWL occurring

during high Q. By river km 4, the annual event is forced by the univariate, annual Q event (Figure 14). This pattern is similar

for the 100-yr event at all transects but with higher magnitude SWL and Q conditions.

6 Discussion25

The hybrid model developed in this study, which combines statistical simulations with a physics-based model, provides a

novel approach for probabilistically evaluating the conditions that drive extreme water levels, not only at a tide gauge, but

also miles upriver. The ability to simulate hundreds of thousands of combinations of Q and SWL events allows for a robust

estimate of resulting along-river water levels, which numerical models alone are unable to consider due to large computational

expenses. While some of our modeling techniques are specific to this location, the overall framework for combining statistical30

and physics-based models is general enough for use in coastal locations throughout the globe where flooding arises from

compounding processes.
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Figure 13. a) The average along-river water level return level at each transect for all 70 probabilistic simulations. b) The along-river difference

between the average annual and 100-yr event. The average forcing condition driving the response-based return level at each river transect

where c) displays the Quillayute Q scenario driving low probability water levels and d) displays the SWL scenario driving low probability

water levels. The grey dashed lines depict the event-based return level, where the low probability water level would be modeled based off ,

for example, the low-probability discharge. Red, orange, blue, and black lines represent the 500, 100, 25, and annual return level event. In

panels c and d, the pink shaded area represents a transition zone, where neither event drives the water level.
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Figure 14. The individual Q or SWL event driving the a) annual and b) 100-yr event at specific along-river locations.

The decomposition of the SWL into low and high frequency signals, including a river-influenced component, helps charac-

terize the importance of physical processes in various regional settings. This is especially important in locations like the US

West coast, where the steep, narrow continental shelf prevents wind and pressure driven storm surge from being overwhelm-

ingly large (Allan et al., 2011). The influence of the river signal in the tide gauge is directly related to the setting of our study

site. The estuary is relatively small and narrow with the river discharging directly into the ocean. This is dissimilar to other tide5

gauges in the region which are located in larger estuaries, situated away from river input. Estuaries typically exhibit wave, tide,

or river-dominant morphology, based on the relative energy of each process (Dalrymple et al., 1992). The Quillayute River

outlets directly to a high wave energy environment and has a small estuary volume compared to its river input volume. The

steep catchment of the mountainous environment means a short response time for rainfall, therefore producing peak discharges

temporally similar to peak storm-induced still water levels, allowing for interaction between the two. In contrast, water level10

elevations with large estuary volume compared to river discharge are less influenced by fluvial processes. Furthermore, a larger

estuary may experience variability in the water surface elevation due to wave-induced setup and/or other local storm-induced

processes (Cheng et al., 2014; Olabarrieta et al., 2011), which may further dampen the influence of a river signal.

Defining compounding extreme events based on a more complete probability space of jointly-occurring conditions has

been described in open coast settings (Serafin et al., 2017), however this is the first application to riverine environments.15
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This research confirms the presence of an oceanographic-fluvial transition zone, where traditional, univariate methodologies

for defining return level events are insufficient for defining water level return levels. Between river km 1.5 and 2.5, we find

that a range of SWL and Q events drive all return level events, and neither the univariate SWL or Q return level drives

the water level. A similar flood zone transition was recently modeled numerically, and albeit for a single event, physically

demonstrated the importance of including multiple variables to reproduce accurate flooding (Bilskie and Hagen, 2018). Thus,5

flood hazard assessments on systems with multivariate forcings may misrepresent water level elevations for low probability

events if only univariate variables are modeled. This has large implications for characterizing the risk to flooding, especially

in the context of mapping flooding hazards. Furthermore, we show that return level water levels can occur over a range of

combined extreme and non-extreme forcing in the flood transition zone. This illustrates that in order to properly understand

the impacts of compounding flooding, more than just design scenarios need to be considered for the proper assessment of risk.10

Many of our results can be explained by dynamics that occur during interacting ocean and river flows. For example, a

coincidence of high SWL and peak river discharge may induce blocking, where river-induced water levels are trapped upstream

and either flood overbank or outlet to the ocean when water recedes (Kumbier et al., 2018; Chen and Liu, 2014). While our

ADCIRC simulation confirms the presence of this effect by matching the peak storm surge at low tide, our hybrid methodology

only models steady flow scenarios. Thus, with co-occurring daily maximum SWL and discharge, we may miss certain dynamics15

important for flooding over unsteady conditions. At low tide, a high river discharge may promote drainage of the floodwater into

the ocean (Kumbier et al., 2018), increasing water levels for days at a time and prolonging exposure to flooding. Furthermore,

interactions between storm surge and river discharge may increase the overall elevation of the residual (Maskell et al., 2013).

Because sea level rise, along with other changes to the climate, will exacerbate the compounding effects of flood drivers

(Moftakhari et al., 2017; Wahl et al., 2015), it is also important to consider the impact of changes to processes driving flooding20

events in the future (Zscheischler et al., 2018). By 2100, the likely range of relative sea level rise in the La Push area is projected

to be between 18 and 80 cm, considering vertical land motion and high and low emissions scenarios (Miller et al., 2018). The

western Olympic Peninsula is projected to experience increased winter precipitation (Mote et al., 2013; Halofsky et al., 2011)

which could subsequently increase either the frequency or intensity of high Q events along the Quillayute River. While we

have characterized the spatial variability in extreme water levels in the present-day, there is a high likelihood changes in the25

future climate will shift the importance of these interacting processes.

7 Conclusions

This research illustrates the importance of considering a large number of forcing conditions to model compounding processes

when evaluating extreme water levels. Here we find that in coastal settings, river discharge can be an important driver of

high water levels measured in a tide gauge. We also find that the univariate, forcing-driven return level event, like the 100-yr30

discharge, does not always match the response return level, like the 100-yr water level. Furthermore, when processes compound,

the low probability water level may be driven by events that are not extreme themselves. Probabilistic techniques allowing for
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the analysis of thousands of combinations of events not captured in the observational record provides a robust characterization

of where river, ocean, or the combination of the two, may be important for generating extreme events.

Overall, the hybrid merging of a statistical and numerical model provides a methodology for better understanding the drivers

of flooding along the length of a river. While our model does not actively resolve the physical interaction of river and oceano-

graphic flow, it develops an approach for characterizing and extracting river-influenced water levels measured at tide gauges5

while robustly modeling the drivers of extreme along-river water levels. Understanding the drivers of flooding events now and

into the future will ultimately increase the preparedness of the community of La Push.
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